Developing an Excellent Education Plan for your Faculty Early Career Development (CAREER) Program Proposal
A Workshop Presented by the Delta Program in Research, Teaching, and Learning and WISCIENCE

Tuesday, June 9, 2015
8:30 am – 10:30 am
Tong Auditorium (1003), Engineering Centers Building

Agenda

Introductions and Overview 5-10 min

Individual reflection on worksheet 5 min
Pairwise discussion about your ideas 5 min

Overview of CAREER award 20 min
Trina McMahon, Civil and Environmental Engineering/Bacteriology
Faculty co-Director, Delta Program

Ideas and Advice from Successful CAREER Awardees 30 min
Christina Remucal, Civil and Environmental Engineering
Sushmita Roy, Biostatistics and Medical Informatics

Introduction to Campus Resources 30 min
Anne Lynn Gillian-Daniel, UW-MRSEC Education Group
Megan Schmid, Madison Teaching and Learning Excellence Program
Karen Dunn, Steenbock Memorial Library
Johanna Taylor, BadgerBOTS Robotics Corporation
Kevin Niemi, WISCIENCE
Don Gillian-Daniel, Delta Program in Research, Teaching and Learning

Discussion and networking 20 min

Workshop evaluation 5 min
1. What part of your research do you hope to infuse into your education plan?

2. What audience are you targeting? Why are you targeting them? Have you considered issues of diversity and under-representation in this selection?

3. How will you locate/recruit your proposed audience to your project?

4. What other efforts on campus can you connect with to improve the success and impact of your efforts?
5. Give 2-3 specific ideas for how you are going to implement your plan. What evidence can you provide that you can actually carry your plan out successfully?

6. What are 2-3 objectives you are thinking of including in your education plan?

7. What are 2-3 outcomes you hope will come out of your plan?

8. How will you evaluate your success? How will you know if/when you have achieved each of your expected outcomes?
A. CAREER Program

This premier program emphasizes the importance the Foundation places on the early development of academic careers dedicated to stimulating the discovery process in which the excitement of research is enhanced by inspired teaching and enthusiastic learning. Effective integration of research and education generates a synergy in which the process of discovery stimulates learning, and assures that the findings and methods of research and education are quickly and effectively communicated in a broader context and to a larger audience.

The CAREER program embodies NSF’s commitment to encourage faculty and academic institutions to value and support the integration of research and education. Successful Principal Investigators will propose creative, integrative and effective research and education plans, developed within the context of the mission, goals, and resources of their organizations, while building a firm foundation for a lifetime of contributions to research, education and their integration.

Integration of Research and Education - All CAREER proposals must have an integrated research and education plan at their core. NSF recognizes that there is no single approach to an integrated research and education plan, but encourages all applicants to think creatively about how their research will impact their education goals and, conversely, how their education activities will feed back into their research. These plans should reflect the proposer's own disciplinary and educational interests and goals, as well as the needs and context of his or her organization. Because there may be different expectations within different disciplinary fields and/or different organizations, a wide range of research and education activities may be appropriate for the CAREER program. Proposers are encouraged to communicate with the CAREER contact or cognizant Program Officer in the Division closest to their area of research to discuss the expectations and approaches that are most appropriate for that area (see http://www.nsf.gov/crssprgm/career/contacts.jsp for a list of CAREER contacts by division).

Project Description:

The Project Description section should contain a well-argued and specific proposal for activities that will, over a 5-year period, build a firm foundation for a lifetime of contributions to research and education in the context of the Principal Investigator's organization. The Project Description may not exceed 15 pages.

The Project Description should include:

- a description of the proposed research project, including preliminary supporting data where appropriate, specific objectives, methods and procedures to be used, and expected significance of the results;
- a description of the proposed educational activities, including plans to evaluate their impact on students and other participants;
- a description of how the research and educational activities are integrated with one another; and results of prior NSF support, if applicable.
Successful applicants will propose creative, effective, integrated research and education plans, and indicate how they will assess these components. While excellence in both education and research is expected, activity of an intensity that leads to an unreasonable workload is not. The research and educational activities do not need to be addressed separately if the relationship between the two is such that the presentation of the integrated project is better served by interspersing the two throughout the Project Description.

Education Activities – Proposed education activities may be in a broad range of areas and may be directed to any level: K-12 students, undergraduates, graduate students, and/or the general public, but should be related to the proposed research. Some examples are: designing innovative courses or curricula; supporting teacher preparation and enhancement; conducting outreach and mentoring activities to enhance scientific literacy or involve students from groups that have been traditionally underrepresented in science; researching students' learning and conceptual development in the discipline; incorporating research activities into undergraduate courses; providing mentored international research experiences for U.S. students; linking education activities to industrial, international, or cross-disciplinary work; and implementing innovative methods for evaluation and assessment. Education activities may also include designing new or adapting and implementing effective educational materials and practices. Such activities should be consistent with research and best practices in curriculum, pedagogy, and evaluation. Proposers may build on NSF-supported activities or other educational projects ongoing on campus. The following resources may be helpful in developing the educational activities.

Broadening Participation in Graduate Education (2009) -
http://www.cgsnet.org/broadening-participation-graduate-education-0
A CAREER proposal must indicate the goals and objectives of the proposed education activities, how it will be integrated with the research component, and the criteria for assessing how these goals will be met. Principal investigators are strongly encouraged to describe how the impact of the educational activities will be assessed or evaluated. A helpful document for information on evaluating educational activities is the NSF publication *The 2002 User-Friendly Handbook for Project Evaluation* (NSF 02-057).

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

* All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
* NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These "Broader Impacts" may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified. Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.
2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (GPG Chapter II.C.2.d.i. contains additional information for use by proposers in development of the Project Description section of the proposal.) Reviewers are strongly encouraged to review the criteria, including GPG Chapter II.C.2.d.i., prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance knowledge; and

Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security;
increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.
Chapter III: NSF Proposal Processing and Review

A comprehensive description of the Foundation’s merit review process is available on the NSF website at: http://www.nsf.gov/bfa/dias/policy/merit_review/.

Proposal review is one step in the NSF program planning and implementation process. Embedded in this process are core strategies that are fundamental to the fulfillment of NSF’s mission. More information about NSF’s mission and strategies can be found in Investing in Science, Engineering, and Education for the Nation’s Future: NSF Strategic Plan for 2014-2018. NSF’s mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF’s mission “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.” NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

• All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
• NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These broader impacts may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
• Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.
With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (GPG Chapter II.C.2.d.(i) contains additional information for use by proposers in development of the Project Description section of the proposal.) Reviewers are strongly encouraged to review the criteria, including GPG Chapter II.C.2.d.(i), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

- **Intellectual Merit**: The Intellectual Merit criterion encompasses the potential to advance knowledge; and

- **Broader Impacts**: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to:

 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and

 b. Benefit society or advance desired societal outcomes (Broader Impacts)?

2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?

3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?

4. How well qualified is the individual, team, or organization to conduct the proposed activities?

5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?
Some NSF-Supported Initiatives at UW-Madison
To Leverage in Your Proposal

CIRTL - Center of the Integration of Research, Teaching and Learning Network

CIRTL, a national network of 21 institutions, promotes the development of a national faculty in science, technology, engineering, and mathematics (STEM) committed to implementing and advancing effective teaching practices for diverse student audiences as part of their professional careers. To accomplish these goals CIRTL is founded on three pillars: Teaching-as-Research, Learning Communities and Learning-through-Diversity. The local implementation of CIRTL at UW-Madison is The Delta Program in Research, Teaching, and Learning.

For more information visit: www.cirtl.net and www.delta.wisc.edu

WiscAMP – Wisconsin Alliance for Minority Participation

WiscAMP aims to address retention and persistence of underrepresented minorities in STEM disciplines by expanding and improving on successful models already in place and fostering and sustaining an alliance among partner institutions.

For more information visit: wiscamp. engr. wisc. edu/

WISELI – Women in Science, Engineering and Leadership Institute

The long-term goal of WISELI is to have the gender of the faculty, chairs, and deans reflect the gender of the student body. To accomplish these goals, WISELI will be a visible, campus-wide entity, endorsed by top-level administrators, which will use UW-Madison as a "living laboratory" to study the problem and implement solutions.

For more information visit: wiseli. engr. wisc. edu

IEG UW MRSEC – Materials Research Science and Engineering Center Interdisciplinary Education Group

This program uses examples of nanotechnology and advanced materials to explore fundamental science and engineering concepts at the college level and to share the "wow" and potential of these fields with public audiences. They work to enhance public understanding of science and engineering through a central theme of "Exploring the Nanoworld, Innovating through Materials" using web dissemination to a range of educators, presentations in public venues, and contributions to popular publications and media.

For more information visit: http://mrsec. wisc. edu/Edetc/

NSEC- Nanoscale Science and Engineering Center

This group addresses grand challenges associated with directed assembly of nanoscale materials into functional systems and architectures through the use of self-assembly, chemical patterning, and external fields. Public dialogue, analysis of governmental regulation, and environmental health and safety research are integral components of the Center. The NSEC operates an ambitious and unique education and outreach program aimed at cultivating the next generation of nanoscale science and engineering experts with diverse and interdisciplinary backgrounds.

For more information visit: http://www. nsec. wisc. edu
CHANGE-IGERT - Certificate on Humans and the Global Environment

The Certificate on Humans and the Global Environment (CHANGE) established a workgroup that aids a small amount of new PhD students each year. The CHANGE program involves faculty members in departments ranging across atmospheric and oceanic sciences, ecology, environmental studies, veterinary medicine, and sociology. An objective of the CHANGE program is to train graduate students to work on environmental problems as a group. Students are encouraged to expand their collaborative efforts beyond the classroom through client-based project work and academic publications.

For more information visit: http://www.nelson.wisc.edu/graduate/change/index.php

(IGERT) - NSF Integrative Graduate Education and Research Traineeship Program

The IGERT Program is intended to establish innovative new models for graduate education and training for scientists and engineers in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. It is also intended to facilitate diversity in student participation and preparation, and to contribute to a world-class, broadly inclusive, and globally engaged science and engineering workforce.

For more information visit: http://nsf.gov/funding/pgm_summ.jsp?pims_id=504772

Talking About Leaving, Revisited

This five-year study builds on research by Elaine Seymour and Nancy Hewitt that found poor teaching was the most significant influence on STEM majors’ decisions to switch fields. Seymour and Hewitt’s 1997 book Talking about Leaving: Why Undergraduates Leave the Sciences subsequently spurred nationwide efforts to improve teaching in STEM courses and to retain more students of color and women into STEM fields. This new study, known as Talking about Leaving Revisited, will investigate whether rates of switching from STEM majors—and students’ experiences in the process—have changed since efforts to improve college science teaching began 15 years ago.

For more information visit: http://talr.wceruw.org/

PREP – Psychological Research Experience Program

The Psychology Research Experience Program (PREP) provides intensive mentoring and experience in scientific research and professional development to undergraduates from historically underrepresented populations who have expressed and demonstrated an interest in a career in scientific psychology.

For more information visit:
http://psych.wisc.edu/Psychological Research Experience Program.htm

Water Sustainability and Climate In the Yahara Watershed

The project is part of an endeavor to understand the interactions between water, climate, land use, infrastructure, and ecosystems through place-based research and innovative methods.

For more information visit: https://wsc.limnology.wisc.edu/about/project

CHTC – The Center for High Throughput Computing

The Center for High Throughput Computing (CHTC) offers a variety of large-scale computing resources and services for UW-affiliated researchers and their collaborators, including classically-defined high-throughput computing (HTC) and high-performance computing (HPC) resources.

For more information visit: http://chtc.cs.wisc.edu
Includes: The Campus Cyberinfrastructure – Network Infrastructure and Engineering (CC-NIE) award from the National Science Foundation (NSF). New networking and storage capabilities will provide the campus with capabilities that support high-volume bulk data transfer, remote experiment control and data visualization. - See more at: http://www.doit.wisc.edu/news/grant-will-boost-uw-madison-computing-network-to-handle-surge-of-research-data/#sthash.CAhE5DpO.dpuf

IceCube Neutrino Observatory
IceCube is a particle detector at the South Pole that records the interactions of a nearly massless subatomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma-ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter and could reveal the physical processes associated with the enigmatic origin of the highest energy particles in nature. The University of Wisconsin–Madison is the lead institution responsible for the maintenance and operations of the detector.

For more information visit: https://icecube.wisc.edu/
Research Experience for Undergraduates
Current programs partially funded by NSF at UW-Madison
http://www.grad.wisc.edu/education/diversity/srop/index.html

Research Experience for Undergraduates – Astronomy and Astrophysics
Eric Hooper, Director
Email: reu@astro.wisc.edu
Website: http://www.astro.wisc.edu/undergrads/uw-madison-reu-program/

Research Experience for Undergraduates - Astrophysics
Eric Hooper, Director
Email: reu@astro.wisc.edu
Website: http://wisp.physics.wisc.edu/reu/

Research Experience for Undergraduates – Microbiology
Jon Roll, Program Director
Email: jtroll@wisc.edu
Website: http://www.bact.wisc.edu/pro_reu.php

Summer Education Research Program (SERP)
Ruttanatip (Dang) Chonwerawong, Program Director, Coordinator
Email: rchonwer@education.wisc.edu
608-890-2580
Website: http://www.education.wisc.edu/serp/

Summer Undergraduate Research Experience –SURE/REU (Engineering)
Kelly Burton, Program Director
Email: kburton@engr.wisc.edu
Website: http://studentservices.engr.wisc.edu/diversity/sure/

Psychology Research Experience Program (PREP)
Email: prep@psych.wisc.edu
Website: http://psych.wisc.edu/Psychological_Research_Experience_Program.htm

International Research Experience for Students in Microbiology—Bangkok, Thailand
Jon Roll, Director
Email: jtroll@wisc.edu
(608) 265-5957
Website: http://www.bact.wisc.edu/pro_ires.php
Integrated Chemistry, Chemical Engineering, and Materials Science Research Experience
for Undergraduates Programs
Andrew Greenberg, Director
Email: aegreenb@engr.wisc.edu

Research Experience for Undergraduates in Nanotechnology (Nano REU)
Website: http://ice.chem.wisc.edu/NanoReu

REU in Chemistry and Biological Engineering
Website: http://ice.chem.wisc.edu/ChemReu

Research Experience for Undergraduates in the Chemistry of Materials for Renewable
Energy (CMRE REU)
Website: http://ice.chem.wisc.edu/EnergyReu

Integrated Biological Sciences Summer Research Program (IBS-SRP) for Undergraduates
Janet Branchaw, Program Director
Email: branchaw@wisc.edu

Program Coordinator:
Email: ibs@biology@wisc.edu
Website: http://www.biology.wisc.edu/IBS-SRP.htm

Biochemistry & Biophysics
Kelley Harris-Johnson (kelleyharris@wisc.edu)

Bioenergy
John Greenler (jgreenler@glbrc.wisc.edu)

Cellular and Molecular Biology
Jessica Skarlupka (cmb@bocklabs.wisc.edu)

Computational Biology and Biostatistics
Whitney A. Sweeney (sweeney@biostat.wisc.edu)

Ecology, Plants and Environmental Systems
Robert Beattie (rbeattie@wisc.edu)

Molecular & Environmental Toxicology
Eileen Stevens (emstevens@wisc.edu)

Neurobiology
Mallory Musolf (musolf@wisc.edu)

Virology
Johan den Boon (jdenboon@morgridgeinstitute.org)
<table>
<thead>
<tr>
<th>Name</th>
<th>Award Date</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christina Remucal</td>
<td>7/1/2015</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Etienne Garand</td>
<td>4/1/2015</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Oliver Schmitz</td>
<td>3/1/2015</td>
<td>Engineering Physics</td>
</tr>
<tr>
<td>Daniel Ludois</td>
<td>2/15/2015</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Sushmita Roy</td>
<td>8/1/2014</td>
<td>Biostatistics</td>
</tr>
<tr>
<td>Richard Kent</td>
<td>7/1/2014</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Erika Marin-Spiotta</td>
<td>6/15/2014</td>
<td>Geography</td>
</tr>
<tr>
<td>Krishanu Saha</td>
<td>6/1/2014</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Clifford Thurber</td>
<td>6/1/2014</td>
<td>Geology</td>
</tr>
<tr>
<td>Michael Arnold</td>
<td>5/15/2014</td>
<td>Engineering</td>
</tr>
<tr>
<td>Marisa Otegni</td>
<td>4/19/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Ahna Skop</td>
<td>4/6/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Xinyu Zhang</td>
<td>4/1/2014</td>
<td>Engineering</td>
</tr>
<tr>
<td>Donna Fernandez</td>
<td>3/11/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Kurt Amann</td>
<td>11/25/2013</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Michael Graham</td>
<td>8/23/2013</td>
<td>Physics</td>
</tr>
<tr>
<td>David Anderson</td>
<td>8/6/2013</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Basil Tikoff</td>
<td>7/31/2013</td>
<td>Earthscience and Geology</td>
</tr>
<tr>
<td>Snezana Stanimirovic</td>
<td>7/16/2013</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Shanon Peters</td>
<td>7/3/2013</td>
<td>Earthscience and Geology</td>
</tr>
<tr>
<td>David Wassarman</td>
<td>5/30/2013</td>
<td>Genetics</td>
</tr>
<tr>
<td>Laurence Loewe</td>
<td>5/15/2013</td>
<td>Biology</td>
</tr>
<tr>
<td>Patrick Krysan</td>
<td>3/21/2013</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>Micheal Sheets</td>
<td>3/21/2013</td>
<td>Genetics</td>
</tr>
<tr>
<td>George Huber</td>
<td>1/31/2013</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Corinna Gries</td>
<td>7/16/2012</td>
<td>Genetics</td>
</tr>
<tr>
<td>Peter Shanan</td>
<td>7/1/2012</td>
<td>Geology</td>
</tr>
<tr>
<td>Benjamin Recht</td>
<td>6/1/2012</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Laurence Loewe</td>
<td>6/1/2012</td>
<td>Genetics</td>
</tr>
<tr>
<td>Brian Pfleger</td>
<td>6/1/2012</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Xudong Wang</td>
<td>5/1/2012</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Reina Maruyama</td>
<td>5/1/2012</td>
<td>Physics</td>
</tr>
<tr>
<td>David Rothamer</td>
<td>2/1/2012</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Bilge Mutlu</td>
<td>9/15/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Snezana Stanimirovic</td>
<td>9/15/2011</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Benedek Valko</td>
<td>9/1/2011</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Douglas Weibel</td>
<td>8/16/2011</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Andrej Zlatos</td>
<td>8/1/2011</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Shan Lu</td>
<td>6/2/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Jennifer Reed</td>
<td>6/1/2011</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Zhiguang Qian</td>
<td>6/1/2011</td>
<td>Statistics</td>
</tr>
<tr>
<td>Jennifer Reed</td>
<td>6/1/2011</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Christopher Re</td>
<td>5/1/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Name</td>
<td>Date</td>
<td>Department</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Nader Behdad</td>
<td>4/1/2011</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Azadeh Davoodi</td>
<td>1/1/2011</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Pamela Kreeger</td>
<td>3/15/2010</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Maxim Vavilov</td>
<td>3/15/2010</td>
<td>Physics</td>
</tr>
<tr>
<td>Amy Ellis</td>
<td>3/15/2010</td>
<td>Curriculum and Instruction</td>
</tr>
<tr>
<td>Jingshan Li</td>
<td>3/15/2010</td>
<td>Industrial and System Engineering</td>
</tr>
<tr>
<td>James Luedtke</td>
<td>2/1/2010</td>
<td>Industrial Engineering and Computer Sciences</td>
</tr>
<tr>
<td>Shaoqin Gong</td>
<td>1/1/2010</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Teresa Holloway</td>
<td>9/1/2009</td>
<td>Environmental Studies</td>
</tr>
<tr>
<td>Oguzhan Alagöz</td>
<td>9/1/2009</td>
<td>Industrial and System Engineering</td>
</tr>
<tr>
<td>Brenda Ogle</td>
<td>9/1/2009</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Karthikeyan Sankaralingam</td>
<td>9/1/2009</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Ankur Desai</td>
<td>9/1/2009</td>
<td>Atmospheric and Oceanic Sciences</td>
</tr>
<tr>
<td>Kevin Turner</td>
<td>8/1/2009</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Dan Negrut</td>
<td>3/1/2009</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Li Zhang</td>
<td>3/1/2009</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Kurt Squire</td>
<td>8/15/2008</td>
<td>Curriculum and Instruction</td>
</tr>
<tr>
<td>Izabela Szlufarska</td>
<td>6/1/2008</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Michael Swift</td>
<td>6/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Hongrui Jaing</td>
<td>5/1/2008</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Aseem Ansari</td>
<td>5/1/2008</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Cameron Curie</td>
<td>4/1/2008</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>Joshua Coon</td>
<td>2/15/2008</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Mahesh Mahanthappa</td>
<td>2/1/2008</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Suman Banerjee</td>
<td>2/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Srinivasa Akella</td>
<td>2/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Krishnan Suresh</td>
<td>1/1/2008</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Chris Weise</td>
<td>8/1/2007</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Katherine McMahon</td>
<td>5/1/2007</td>
<td>Civil & Environmental &Biomedical Engineering</td>
</tr>
<tr>
<td>Shuchi Chawla</td>
<td>3/15/2007</td>
<td>Computer Sciences</td>
</tr>
<tr>
<td>Teri Balser</td>
<td>2/1/2007</td>
<td>Soil Science</td>
</tr>
<tr>
<td>Tehshik Yoon</td>
<td>2/1/2007</td>
<td>Chemistry</td>
</tr>
<tr>
<td>AnHai Doan</td>
<td>8/31/2006</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Cristian Estan</td>
<td>7/1/2006</td>
<td>Computer Sciences</td>
</tr>
<tr>
<td>Ahna Skop</td>
<td>5/15/2006</td>
<td>Genetics</td>
</tr>
<tr>
<td>Shiyu Zhou</td>
<td>5/1/2006</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>Irena Knezevic</td>
<td>4/1/2006</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Christos Maravelias</td>
<td>4/1/2006</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Song Jin</td>
<td>3/1/2006</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Joel Pederson</td>
<td>3/1/2006</td>
<td>Soil Science Academic Program</td>
</tr>
<tr>
<td>Kristyn Masters</td>
<td>2/1/2006</td>
<td>Biomedical Engineering</td>
</tr>
</tbody>
</table>
Merit Review Criterion: Broader Impacts (Chemistry Examples)
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13626&org=CHE&from=home

SYNOPSIS

Merit Review Criterion: Broader Impacts

All proposals submitted to the National Science Foundation are evaluated through use of two National Science Board approved merit review criteria. The two merit review criteria are 1) What is the intellectual merit of the proposed activity? and 2) What are the broader impacts of the proposed activity? Proposals that do not separately address both merit review criteria within the Project Summary and Project Description will be returned without review.

In addition to the guidelines and examples provided by the PAPP Guide, below is a list of examples demonstrating how the chemistry community has addressed the merit review criterion of broader impacts:

- Offering national or international summer research or outreach programs for middle and high school students, high school teachers, or undergraduate students including many from underrepresented groups.
- Organizing national and international workshops or symposia for faculty or students.
- Training and mentoring students to be future professionals.
- Strengthening the chemical workforce through curriculum development.
- Implementing strategies to increase the number of women and minority chemists in tenured academic positions in research universities.
- Updating curriculum by writing texts or developing new classroom instructional materials and laboratory experiments.
- Introducing students to authentic research experiences in the first- and second-year chemistry laboratory curriculum.
- Working with science centers to disseminate their research and educational activities to a broad audience via exhibits, outreach programs, activities or events.
- Mentoring junior faculty.
- Serving as a journal editor or peer reviewer for grants and publications.
- Preparing new compounds, materials, techniques or devices of industrial, medical, environmental, or computational significance.
- Identifying more effective ways to use existing energy resources. Discovering new or renewable energy sources.
- Developing new sensors, technology or instrumentation for national security.
- Forming start-up companies for manufacturing or distributing new products or technologies.
• Writing scholarly review articles for peer reviewed journals or less technical articles for the public.
• Participating in interdisciplinary research or educational activities.
• Contributing to cyber-enabled chemistry activities such as participating with or establishing a team of researchers who can assemble distributed expertise and resources in a virtual lab to target chemical research and education priorities.
• Collaborating with industrial or government colleagues.
• Establishing international research collaborations.
• Assisting journalists with their articles and press releases on technical topics.
• Developing new art forms for communicating science to wider audiences.
• Designing new routes to commodity or fine chemicals.
• Designing safer laboratory procedures or environmentally benign processes.

Broader impact activities are a critical element for the long-term health, vitality, and infrastructure of the chemistry discipline. They contribute to new discoveries and understandings, an enhanced infrastructure for research and education, broad dissemination of research results, recruitment of a diverse workforce, professional development of co-workers and effective communication with non-specialist audiences regarding the societal benefits of the research being conducted. Collectively, the broader impact of the research and educational activities being completed by the chemistry community represents a success story that should be widely shared.

We hope that the above guidelines and examples will assist you with addressing and incorporating the merit review criterion of broader impacts within your proposal.
For more information: http://researchdata.wisc.edu/make-a-plan/nsf-data-plans4/
Example Postdoctoral Researcher Mentoring Plan
Adapted from: https://www.nsf.gov/eng/iip/sbir/Sample_Postdoc_Mentoring_Plan.doc

This Postdoctoral Researcher Mentoring Plan has been prepared by <organization name>. The Plan establishes guidelines for work to be performed by a Postdoctoral Researcher in support of the NSF <SBIR or STTR> <Phase I or Phase II> Project Awarded to <company name>, entitled “<title of project>”. The Postdoctoral Researcher assigned to the project will work in <name/university> laboratory and will conduct research on <name tasks>.

1. **Orientation** will include in-depth conversations between <company researcher name> and the Postdoctoral Researcher. Mutual expectations will be discussed and agreed upon in advance. Orientation topics will include (a) the amount of independence the Postdoctoral Researcher requires, (b) interaction with coworkers, (c) productivity including the importance of scientific publications, (d) work habits and laboratory safety, and (e) documentation of research methodologies and experimental details so that the work can be continued by other researchers in the future.

2. **Career Counseling** will be directed at providing the Postdoctoral Researcher with the skills, knowledge, and experience needed to excel in his/her chosen career path. In addition to guidance provided by <post doc researcher name>, the Postdoctoral Researcher will be encouraged to discuss career options with researchers and managers at <university name> and with former students and colleagues of <post doc researcher name>.

3. **Experience with Preparation of Grant Proposals** will be gained by direct involvement of the Postdoctoral Researcher in proposals prepared by <company name>. The Postdoctoral Researcher will have an opportunity to learn best practices in proposal preparation including identification of key research questions, definition of objectives, description of approach and rationale, and construction of a work plan, timeline, and budget.

4. **Publications and Presentations** are expected to result form the work supported by the grant. These will be prepared under the direction of <post doc researcher name> and in collaboration with researchers at <company name> as appropriate. The Postdoctoral Researcher will receive guidance and training in the preparation of manuscripts for scientific journals and presentations at conferences.

5. **Teaching and Mentoring Skills** will be developed through professional development activities around teaching through the Delta Program in Research, Teaching and Learning at UW-Madison or the national Center for the Integration of Research, Teaching and Learning (CIRTL) Network. <post doc researcher name> will attend workshops, seminars and/or courses offered by the Delta program or CIRTL to learn to teach effectively. For example, Delta’s College Classroom course will provide <post doc researcher name> with fundamental pedagogical skills. Delta’s Research Mentor Training seminar will prepare <post doc researcher name>.
Name> to effectively mentor graduate and undergraduate students. Additional skills will be developed in the context of regular meetings within <University Name> research group during which graduate students and postdoctoral researchers describe their work to colleagues within the group and assist each other with solutions to challenging research problems, often resulting in cross fertilization of ideas.

6. **Instruction in Professional Practices** will be provided on a regular basis in the context of the research work and will include fundamentals of the scientific method, laboratory safety, and other standards of professional practice. In addition, the Postdoctoral Researcher will be encouraged to affiliate with one or more professional societies in his/her chosen field.

7. **Technology Transfer** activities will include regular contact with researchers at <Company Name>. The Postdoctoral Researcher will be given an opportunity to become familiar with the university-industry relationship including applicable confidentiality requirements and preparation of invention disclosure applications.

8. **Success of the Mentoring Plan** will be assessed by monitoring the personal progress of the Postdoctoral Researcher through a tracking of the Postdoctoral Researcher’s progress toward his/her career goals after finishing the postdoctoral program.
UW-Madison resources:
https://research.wisc.edu/postdocs/mentoringpostdocs/

Mentoring Postdocs

NIH Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (Parent F32) –
Additional Educational Information

The National Institutes for Health no longer require Ruth L. Kirschstein National Research Service Award (NRSA) Individual Postdoctoral Fellowship (Parent F32) proposals to include additional educational information. However, it is suggested that this type of information be included in another section of the application. Click here for examples of the types of resources available to UW-Madison postdoctoral researchers that could be included in this section of the proposal.

NSF Mentoring Requirements for Proposals that Support Postdocs

The National Science Foundation requires all proposals that include funding for postdoctoral researchers to include a postdoctoral mentoring plan. Proposals that do not include a plan for mentoring activities will be returned without review. Check the most recent version of the Proposal and Award Policies and Procedures Guide on the NSF website for more details.

Examples of mentoring activities include, but are not limited to:

- career counselling
- training in preparation of grant proposals
- publications and presentations
- guidance on ways to improve teaching and mentoring skills
- guidance on how to effectively collaborate with researchers from diverse backgroungs and disciplinary areas
- training in responsible professional practices

Investigators may seek to identify local resources and activities that provide mentoring opportunities (i.e. laboratory meetings and seminars, periodic individual meetings, participation in manuscript and grant proposal preparation, etc.).

Other Mentoring Resources

- The Graduate School and partners offer seminars on research ethics.
- The UW-Madison Institute for Clinical and Translational Research (ICTR) hosts the Research Mentoring website designed to provide resources to improve research mentoring relationships. It provides curricula, assessment tools and resources relevant for mentors and mentees, as well as those who would like to implement mentor training.
- The American Association of Medical Colleges (AAMC) has created a Compact between Postdoctoral Appointees and Their Mentors, which is “intended to initiate discussions ...about the postdoctoral appointee-mentor relationship and the commitments necessary for a high quality postdoctoral training experience.” The AAMC suggests various ways it can be used in order to create mutual expectations for training between postdocs and their mentors.
- An annual review and an Individual Development Plan for Postdoctoral Fellows developed by Federation of American Societies for Experimental Biology (FASEB) provides a planning process that identifies both professional development needs and career objectives.
- UW-Madison offers informal and formal activities for postdocs to improve their teaching and mentoring skills through the Delta
Developing an Excellent Education Plan for your Faculty Early Career Development (CAREER) Program Proposal

6/9/15

Evaluation

1. How did you hear about this workshop? If you heard via email, who was the email from?

2. Using the rating scale below, please indicate your satisfaction with each of the topics covered in this workshop:

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of CAREER Criteria</td>
<td></td>
</tr>
<tr>
<td>Experiences of successful applicants</td>
<td></td>
</tr>
<tr>
<td>Introductions to campus resources and potential partners</td>
<td></td>
</tr>
<tr>
<td>Networking time</td>
<td></td>
</tr>
</tbody>
</table>

3. What aspects of this workshop did you find most useful?

4. What would be something to improve in this workshop?

4. Any other comments?

Thanks for coming!