Developing an Excellent Education Plan for your Faculty Early Career Development (CAREER) Program Proposal

A Workshop Presented by the Delta Program in Research, Teaching, and Learning and the Institute for Biology Education

Tuesday, June 10, 2014
10:00am – 12:00 pm
Tong Auditorium (1003), Engineering Centers Building

Agenda

Introductions and Overview 10 min

Overview of CAREER award 30 min

Trina McMahon, Civil and Environmental Engineering/Bacteriology
Faculty co-Director, Delta Program

Ideas and Advice from Successful CAREER Awardees 30 min

Cameron Currie, Bacteriology
Azadeh Daboodi, Electrical and Computer Engineering

Introduction to Campus Resources 30 min

Kevin Niemi, Institute for Biology Education
Emily Utzerath, Madison Teaching and Learning for Excellence Program
Ben Taylor, Materials Research Science and Engineering Center
Brion Fox, BadgerBOTS Education Center
Don Gillian-Daniel, Delta Program including Internship Opportunities, Achievement Gap Project, and Research Mentor Training

Discussion and networking 20 min
1. What part of your research do you hope to infuse into your education plan?

2. What audience are you targeting? Why are you targeting them? Have you considered issues of diversity and under-representation in this selection?

3. How will you locate/recruit your proposed audience to your project?

4. What other efforts on campus can you connect with to improve the success and impact of your efforts?
5. Give 2-3 specific ideas for how you are going to implement your plan. What evidence can you provide that you can actually carry your plan out successfully?

6. What are 2-3 objectives you are thinking of including in your education plan?

7. What are 2-3 outcomes you hope will come out of your plan?

8. How will you evaluate your success? How will you know if/when you have achieved each of your expected outcomes?
All NSF proposals are evaluated through use of the two National Science Board (NSB)-approved merit review criteria: intellectual merit and the broader impacts of the proposed effort. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two NSB-approved merit review criteria are listed below. The criteria include considerations that help define them. These considerations are suggestions and not all will apply to any given proposal. While proposers must address both merit review criteria, reviewers will be asked to address only those considerations that are relevant to the proposal being considered and for which there reviewer is qualified to make judgments.

- **Intellectual Merit:** The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- **Broader Impacts:** The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes

What is the intellectual merit of the proposed activity? How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields? How well qualified is the proposer (individual or team) to conduct the project? (If appropriate, the reviewer will comment on the quality of the prior work.) To what extent does the proposed activity suggest and explore creative, original, or potentially transformative concepts? How well conceived and organized is the proposed activity? Is there sufficient access to resources?

What are the broader impacts of the proposed activity? How well does the activity advance discovery and understanding while promoting teaching, training, and learning? How well does the proposed activity broaden the participation of underrepresented groups (e.g., gender, ethnicity, disability, geographic, etc.)? To what extent will it enhance the infrastructure for research and education, such as facilities, instrumentation, networks, and partnerships? Will the results be disseminated broadly to enhance scientific and technological understanding? What may be the benefits of the proposed activity to society?

Mentoring activities provided to postdoctoral researchers supported on the project, as described in a one-page supplementary document, will be evaluated under the Broader Impacts criterion.

The following elements should be considered in the review for both criteria:
1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

NSF staff also will give careful consideration to the following in making funding decisions:

Integration of Research and Education - All CAREER proposals must have an integrated research and education plan at their core. NSF recognizes that there is no single approach to an integrated research and education plan, but encourages all applicants to think creatively about how their research will impact their education goals and, conversely, how their education activities will feed back into their research. These plans should reflect both the proposer's own disciplinary and educational interests and goals, as well as the needs and context of his or her organization. Because there may be different expectations within different disciplinary fields and/or different organizations, a wide range of research and education activities may be appropriate for the CAREER program.

Proposers are encouraged to communicate with the CAREER contact or cognizant Program Officer in the Division closest to their area of research to discuss the expectations and approaches that are most appropriate for that area (see http://www.nsf.gov/crssprgm/career/contacts.jsp for a list of CAREER contacts by division). All proposals submitted to the National Science Foundation are evaluated through the use of two merit review criteria, which they must address explicitly in the Project Summary and Project Description. One relates to intellectual merit and the other relates to broader impacts of the activities. The following URL contains examples illustrating activities that are likely to demonstrate the broader impacts: http://www.nsf.gov/pubs/gpg/broaderimpacts.pdf. CAREER proposers may find these examples useful as they develop their proposals.

d. Project Description (including Results from Prior NSF Support)

(i) **Content**

The Project Description should provide a clear statement of the work to be undertaken and must include: objectives for the period of the proposed work and expected significance; relation to
longer-term goals of the PI’s project; and relation to the present state of knowledge in the field, to
work in progress by the PI under other support and to work in progress elsewhere.

The Project Description should outline the general plan of work, including the broad design of
activities to be undertaken, and, where appropriate, provide a clear description of experimental
methods and procedures. Proposers should address what they want to do, why they want to do it,
how they plan to do it, how they will know if they succeed, and what benefits could accrue if the
project is successful. The project activities may be based on previously established and/or
innovative methods and approaches, but in either case must be well justified. These issues apply
to both the technical aspects of the proposal and the way in which the project may make broader
contributions.

The Project Description must contain, as a separate section within the narrative, a discussion of
the broader impacts of the proposed activities. Broader impacts may be accomplished through
the research itself, through the activities that are directly related to specific research projects, or
through activities that are supported by, but are complementary to the project. NSF values the
advancement of scientific knowledge and activities that contribute to the achievement of
societally relevant outcomes. Such outcomes include, but are not limited to: full participation of
women, persons with disabilities, and underrepresented minorities in science, technology,
engineering, and mathematics (STEM); improved STEM education and educator development at
any level; increased public scientific literacy and public engagement with science and
technology; improved well-being of individuals in society; development of a diverse, globally
competitive STEM workforce; increased partnerships between academia, industry, and others;
improved national security; increased economic competitiveness of the United States; and
enhanced infrastructure for research and education.

Plans for data management and sharing of the products of research, including preservation,
documentation, and sharing of data, samples, physical collections, curriculum materials and
other related research and education products should be described in the Special Information and
Supplementary Documentation section of the proposal (see GPG Chapter II.C.2.j for additional
instructions for preparation of this section).
III. NSF Proposal Processing and Review

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF’s mission “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.” NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

- All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.

- NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These broader impacts may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.

- Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly
stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to
document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a
context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of two National Science Board approved merit
review criteria. In some instances, however, NSF will employ additional criteria as required to
highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration
during the review and decision-making processes; each criterion is necessary but neither, by
itself, is sufficient. Therefore, proposers must fully address both criteria. (GPG Chapter
II.C.2.d.(i) contains additional information for use by proposers in development of the Project
Description section of the proposal.) Reviewers are strongly encouraged to review the criteria,
including GPG Chapter II.C.2.d.(i), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to
do, why they want to do it, how they plan to do it, how they will know if they succeed, and what
benefits could accrue if the project is successful. These issues apply both to the technical aspects
of the proposal and the way in which the project may make broader contributions. To that end,
reviewers will be asked to evaluate all proposals against two criteria:

• Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance
knowledge; and
• Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit
society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to:
 a. Advance knowledge and understanding within its own field or across different fields
 (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or
 potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based
 on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed
 activities?
5. Are there adequate resources available to the PI (either at the home organization or
 through collaborations) to carry out the proposed activities?
Some NSF-Supported Initiatives at UW-Madison

CIRTL - Center of the Integration of Research, Teaching and Learning Network
CIRTL, a national network of 25 institutions, promotes the development of a national faculty in science, technology, engineering, and mathematics (STEM) committed to implementing and advancing effective teaching practices for diverse student audiences as part of their professional careers. To accomplish these goals CIRTL is founded on three pillars: Teaching-as-Research, Learning Communities and Learning-through-Diversity. The local implementation of CIRTL at UW-Madison is The Delta Program in Research, Teaching, and Learning.

For more information visit: www.cirtl.net and www.delta.wisc.edu

WiscAmp – Wisconsin Alliance for Minority Participation
WiscAMP aims to address retention and persistence of underrepresented minorities in STEM disciplines by expanding and improving on successful models already in place and fostering and sustaining an alliance among partner institutions.

For more information visit: wiscamp.engr.wisc.edu/

WISELI – Women in Science, Engineering and Leadership Institute
The long-term goal of WISELI is to have the gender of the faculty, chairs, and deans reflect the gender of the student body. To accomplish these goals, WISELI will be a visible, campus-wide entity, endorsed by top-level administrators, which will use UW-Madison as a "living laboratory" to study the problem and implement solutions.

For more information visit: wiseli.engr.wisc.edu

UW MRSEC - Materials Research Science and Engineering Center
This group use examples of nanotechnology and advanced materials to explore science and engineering concepts at the college level, and brings the "wow" and potential of nanotechnology and advanced materials to the public.

For more information visit: http://www.mrsec.wisc.edu/Edetc/index.html

IEG – Interdisciplinary Education Group
This program uses examples of nanotechnology and advanced materials to explore fundamental science and engineering concepts at the college level and to share the "wow" and potential of these fields with public audiences. They work to enhance public understanding of science and engineering through a central theme of "Exploring the Nanoworld, Innovating through Materials" using web dissemination to a range of educators, presentations in public venues, and contributions to popular publications and media.

For more information visit: http://mrsec.wisc.edu/Edetc/
NSEC- Nanoscale Science and Engineering Center
This group addresses grand challenges associated with directed assembly of nanoscale materials into functional systems and architectures through the use of self-assembly, chemical patterning, and external fields. Public dialogue, analysis of governmental regulation, and environmental health and safety research are integral components of the Center. The NSEC operates an ambitious and unique education and outreach program aimed at cultivating the next generation of nanoscale science and engineering experts with diverse and interdisciplinary backgrounds.

For more information visit: http://www.nsec.wisc.edu

CHANGE-IGERT -Certificate on Humans and the Global Environment
The Certificate on Humans and the Global Environment (CHANGE) established a workgroup that aids a small amount of new PhD students each year. The CHANGE program involves faculty members in departments ranging across atmospheric and oceanic sciences, ecology, environmental studies, veterinary medicine, and sociology. An objective of the CHANGE program is to train graduate students to work on environmental problems as a group. Students are encouraged to expand their collaborative efforts beyond the classroom through client-based project work and academic publications.

For more information visit: www.sage.wisc.edu/igert/news.html

(IGERT) - NSF Integrative Graduate Education and Research Traineeship Program
The IGERT Program is intended to establish innovative new models for graduate education and training for scientists and engineers in a fertile environment for collaborative research that transcends traditional disciplinary boundaries. It is also intended to facilitate diversity in student participation and preparation, and to contribute to a world-class, broadly inclusive, and globally engaged science and engineering workforce.

For more information visit: www.grad.wisc.edu/research/researchfunding/fundingopps/nsfigert2.html

Talking About Leaving, Revisited
This five-year study builds on research by Elaine Seymour and Nancy Hewitt that found poor teaching was the most significant influence on STEM majors’ decisions to switch fields. Seymour and Hewitt’s 1997 book Talking about Leaving: Why Undergraduates Leave the Sciences subsequently spurred nationwide efforts to improve teaching in STEM courses and to retain more students of color and women into STEM fields. This new study, known as Talking about Leaving Revisited, will investigate whether rates of switching from STEM majors—and students’ experiences in the process—have changed since efforts to improve college science teaching began 15 years ago.

For more information visit: http://talr.wceruw.org/
Research Experience for Undergraduates
Current programs partially funded by NSF at UW-Madison
http://www.grad.wisc.edu/education/diversity/srop/index.html

Research Experience for Undergraduates - Astrophysics (REU Astrophysics)
Eric Hooper, Director
Email: reu@astro.wisc.edu
Website: http://wisp.physics.wisc.edu/reu/

Research Experience for Undergraduates – Microbiology
Jon Roll, Program Director
Email: jtroll@wisc.edu
Website: http://www.bact.wisc.edu

Summer Education Research Program (SERP)
Ruttanatip (Dang) Chonwerawong, Program Director
Bethany Brent, Program Coordinator
Email: bobrent@wisc.edu
Website: http://www.education.wisc.edu/serp/

Summer Undergraduate Research Experience –SURE/REU (Engineering)
Kelly Burton, Program Director
Email: kburton@engr.wisc.edu
Website: http://studentservices.engr.wisc.edu/diversity/sure/

Psychology Research Experience Program (PREP)
Brad Postle, Director
Email: postle@wisc.edu
Emily Forscher, Coordinator
Email: prep@psych.wisc.edu
Website: http://glial.psych.wisc.edu/index.php/prep

Geothermal and Energy Geotechnics
Jim Tinjum, Co-Director
Email: tinjum@epd.engr.wisc.edu
Dante Fratta, Co-Director
Email: fratta@wisc.edu
Sabrina Bradshaw, Program Coordinator
Email: sbradshaw@wisc.edu
Website: http://gle.wisc.edu/reu/

International Research Experience for Students in Microbiology—Bangkok, Thailand
Jon Roll, Director
jtroll@wisc.edu
(608) 265-5957
http://bact.wisc.edu/programs_ires.php
Integrated Chemistry, Chemical Engineering, and Materials Science Research Experience for Undergraduates Programs
Andrew Greenberg, Director
Email: aegreenb@engr.wisc.edu
Beth Misco, Coordinator
Email: misco@cae.wisc.edu

Research Experience for Undergraduates in Nanotechnology (Nano REU)
Website: http://ice.chem.wisc.edu/NanoReu

REU in Chemistry and Biological Engineering
Website: http://ice.chem.wisc.edu/ChemReu

Research Experience for Undergraduates in the Chemistry of Materials for Renewable Energy (CMRE REU)
Website: http://ice.chem.wisc.edu/EnergyReu

Integrated Biological Sciences Summer Research Program (IBS-SRP) for Undergraduates
Janet Branchaw, PhD, Program Director
Lucas Moyer-Horner, Program Coordinator
Email: lrmhorner@gmail.com
Website: http://cbe.wisc.edu/srp-bio/

Biochemistry & Biophysics
Kelley Harris-Johnson (kelleyharris@wisc.edu)

Bioenergy
John Greenler (jgreenler@glbrc.wisc.edu)

Cellular and Molecular Biology
Michelle Holland (cmb@bocklabs.wisc.edu)

Computational Biology and Biostatistics
Whitney A. Sweeney (sweeney@biostat.wisc.edu)

Ecology, Plants and Environmental Systems
Carmela Diosana (ccdiosana@wisc.edu)
Sara Rodock (rodock@wisc.edu)

Molecular & Environmental Toxicology
Eileen Stevens (emstevens@wisc.edu)

Neurobiology
Mallory Musolf (musolf@wisc.edu)

Virology
Johan den Boon (jdenboon@morgridgeinstitute.org)
UW-Madison CAREER Award Recipients 2006-2014 (Current as of May 2014)

<table>
<thead>
<tr>
<th>Name</th>
<th>Award Date</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifford Thurber</td>
<td>6/1/2014</td>
<td>Geology</td>
</tr>
<tr>
<td>Eric Shusta</td>
<td>5/1/2014</td>
<td>Chemical and Biochemical Engineering</td>
</tr>
<tr>
<td>Marisa Otegni</td>
<td>4/19/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Ahna Skop</td>
<td>4/6/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Donna Fernandez</td>
<td>3/11/2014</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Kurt Amann</td>
<td>11/25/2013</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Michael Graham</td>
<td>8/23/2013</td>
<td>Physics</td>
</tr>
<tr>
<td>David Anderson</td>
<td>8/6/2013</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Basil Tikoff</td>
<td>7/31/2013</td>
<td>Earthscience and Geology</td>
</tr>
<tr>
<td>Snezana Stanimirovic</td>
<td>7/16/2013</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Shanon Peters</td>
<td>7/3/2013</td>
<td>Earthscience and Geology</td>
</tr>
<tr>
<td>David Wassarman</td>
<td>5/30/2013</td>
<td>Genetics</td>
</tr>
<tr>
<td>Laurence Loewe</td>
<td>5/15/2013</td>
<td>Biology</td>
</tr>
<tr>
<td>Patrick Krysan</td>
<td>3/21/2013</td>
<td>Biotechnology</td>
</tr>
<tr>
<td>Micheal Sheets</td>
<td>3/21/2013</td>
<td>Genetics</td>
</tr>
<tr>
<td>George Huber</td>
<td>1/31/2013</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Corinna Gries</td>
<td>7/16/2012</td>
<td>Genetics</td>
</tr>
<tr>
<td>Peter Shanan</td>
<td>7/1/2012</td>
<td>Geology</td>
</tr>
<tr>
<td>Benjamin Recht</td>
<td>6/1/2012</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Laurence Loewe</td>
<td>6/1/2012</td>
<td>Genetics</td>
</tr>
<tr>
<td>Brian Pfleger</td>
<td>6/1/2012</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Xudong Wang</td>
<td>5/1/2012</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Reina Maruyama</td>
<td>5/1/2012</td>
<td>Physics</td>
</tr>
<tr>
<td>David Rothamer</td>
<td>2/1/2012</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Bilge Mutlu</td>
<td>9/15/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Snezana Stanimirovic</td>
<td>9/15/2011</td>
<td>Astronomy</td>
</tr>
<tr>
<td>Benedek Valko</td>
<td>9/1/2011</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Douglas Weibel</td>
<td>8/16/2011</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Andrej Zlatos</td>
<td>8/1/2011</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Shan Lu</td>
<td>6/2/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Jennifer Reed</td>
<td>6/1/2011</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Zhiguang Qian</td>
<td>6/1/2011</td>
<td>Statistics</td>
</tr>
<tr>
<td>Jennifer Reed</td>
<td>6/1/2011</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Christopher Re</td>
<td>5/1/2011</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Nader Behdad</td>
<td>4/1/2011</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Azadeh Davoodi</td>
<td>1/1/2011</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Pamela Kreeger</td>
<td>3/15/2010</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Maxim Vavilov</td>
<td>3/15/2010</td>
<td>Physics</td>
</tr>
<tr>
<td>Amy Ellis</td>
<td>3/15/2010</td>
<td>Curriculum and Instruction</td>
</tr>
<tr>
<td>Student Name</td>
<td>Date</td>
<td>Major</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Jingshan Li</td>
<td>3/15/2010</td>
<td>Industrial and System Engineering</td>
</tr>
<tr>
<td>James Luedtke</td>
<td>2/1/2010</td>
<td>Industrial Engineering and Computer Sciences</td>
</tr>
<tr>
<td>Shaoqin Gong</td>
<td>1/1/2010</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Teresa Holloway</td>
<td>9/1/2009</td>
<td>Environmental Studies</td>
</tr>
<tr>
<td>Oguzhan Alagoz</td>
<td>9/1/2009</td>
<td>Industrial and System Engineering</td>
</tr>
<tr>
<td>Brenda Ogle</td>
<td>9/1/2009</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>Karthikeyan Sankaralingam</td>
<td>9/1/2009</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Ankur Desai</td>
<td>9/1/2009</td>
<td>Atmospheric and Oceanic Sciences</td>
</tr>
<tr>
<td>Kevin Turner</td>
<td>8/1/2009</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Dan Negrut</td>
<td>3/1/2009</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Li Zhang</td>
<td>3/1/2009</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Kurt Squire</td>
<td>8/15/2008</td>
<td>Curriculum and Instruction</td>
</tr>
<tr>
<td>Izabela Szuflarska</td>
<td>6/1/2008</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Michael Swift</td>
<td>6/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Hongrui Jaing</td>
<td>5/1/2008</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Aseem Ansari</td>
<td>5/1/2008</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Cameron Curie</td>
<td>4/1/2008</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>Joshua Coon</td>
<td>2/15/2008</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Mahesh Mahanthappa</td>
<td>2/1/2008</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Suman Banerjee</td>
<td>2/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Srinivasa Akella</td>
<td>2/1/2008</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Krishnan Suresh</td>
<td>1/1/2008</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Chris Weise</td>
<td>8/1/2007</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>Katherine McMahon</td>
<td>5/1/2007</td>
<td>Civil & Environmental &Biomedical Engineering</td>
</tr>
<tr>
<td>Shuchi Chawla</td>
<td>3/15/2007</td>
<td>Computer Sciences</td>
</tr>
<tr>
<td>Teri Balser</td>
<td>2/1/2007</td>
<td>Soil Science</td>
</tr>
<tr>
<td>Tehshik Yoon</td>
<td>2/1/2007</td>
<td>Chemistry</td>
</tr>
<tr>
<td>AnHai Doan</td>
<td>8/31/2006</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Cristian Estan</td>
<td>7/1/2006</td>
<td>Computer Sciences</td>
</tr>
<tr>
<td>Ahna Skop</td>
<td>5/15/2006</td>
<td>Genetics</td>
</tr>
<tr>
<td>Shiyu Zhou</td>
<td>5/1/2006</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>Irena Knezevic</td>
<td>4/1/2006</td>
<td>Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Christos Maravelias</td>
<td>4/1/2006</td>
<td>Chemical and Biological Engineering</td>
</tr>
<tr>
<td>Song Jin</td>
<td>3/1/2006</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Joel Pederson</td>
<td>3/1/2006</td>
<td>Soil Science Academic Program</td>
</tr>
<tr>
<td>Kristyn Masters</td>
<td>2/1/2006</td>
<td>Biomedical Engineering</td>
</tr>
</tbody>
</table>
Developing an Excellent Education Plan for your Faculty Early Career Development (CAREER) Program Proposal
6/10/2014
Evaluation

1. How did you hear about this workshop? If you heard via email, who was the email from?

2. Using the rating scale below, please indicate your satisfaction with each of the topics covered in this workshop:

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of CAREER Criteria</td>
<td></td>
</tr>
<tr>
<td>Experiences of successful applicants</td>
<td></td>
</tr>
<tr>
<td>Introductions to campus resources and potential partners</td>
<td></td>
</tr>
<tr>
<td>Networking time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Very Dissatisfied</th>
<th>Dissatisfied</th>
<th>Neither Dissatisfied or Satisfied</th>
<th>Satisfied</th>
<th>Very Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

2. What aspects of this workshop did you find most interesting and useful?

3. What would be something to improve in this workshop?

4. Any other comments?

Thanks for coming!